Efficient method for localised functions using domain transformation and Fourier sine series
نویسندگان
چکیده
Efficient method for localised functions using domain transformation and Fourier sine series" (2014). Taylor & Francis makes every effort to ensure the accuracy of all the information (the " Content ") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. An efficient approach to handle localised states by using spectral methods (SM) in one and three dimensions is presented. The method consists of transformation of the infinite domain to the bounded domain in (0, π) and using the Fourier sine series as a set of basis functions for the SM. It is shown that with an appropriate choice of transformation functions, this method manages to preserve the good properties of original SMs; more precisely, superb computational efficiency when high level of accuracy is necessary. This is made possible by analytically exploiting the properties of the transformation function and the Fourier sine series. An especially important property of this approach is the possibility of calculating the Hartree energy very efficiently. This is done by exploiting the positive properties of the sine series as a basis set and conducting an extinctive part of the calculations analytically. We illustrate the efficiency of this method and implement it to solve the Poisson's and Helmholtz equations in both one and three dimensions. The efficiency of the method is verified through a comparison to recently published results for both one-and three-dimensional problems. 1. Introduction In atomistic calculations of molecules and clusters, it is essential to use localised basis sets, where the wavefunctions vanish exponentially at large distances. There are many used sets and the most common ones are Slater-type and Gaussian-type orbitals (STO and GTO, respectively) [1–6]. Practically, the sets dectate the accuracy and maximum possible size of the …
منابع مشابه
Non-Fourier heat conduction equation in a sphere; comparison of variational method and inverse Laplace transformation with exact solution
Small scale thermal devices, such as micro heater, have led researchers to consider more accurate models of heat in thermal systems. Moreover, biological applications of heat transfer such as simulation of temperature field in laser surgery is another pathway which urges us to re-examine thermal systems with modern ones. Non-Fourier heat transfer overcomes some shortcomings of Fourier heat tran...
متن کاملOn The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملBuckling of Rectangular Functionally Graded Material Plates under Various Edge Conditions
In the present paper, the buckling problem of rectangular functionally graded (FG) plate with arbitrary edge supports is investigated. The present analysis is based on the classical plate theory (CPT) and large deformation is assumed for deriving stability equations. The plate is subjected to bi-axial compression loading. Mechanical properties of FG plate are assumed to vary continuously along ...
متن کاملA Large Signal Integration Formula
A new integration method for highly oscillating circuits is proposed. The method is based on using finite (truncated) Fourier series for representation of signals. Nonlinear transformations are implemented in two phases: harmonic linearization using only one sine wave in phase space, and general Chebyshev transformation of waveforms to return into true time domain.
متن کاملStability Analysis for Wake Flow Behind a Flat Plate
Neutral stability limits for wake flow behind a flat plate is studied using spectral method. First, Orr-Sommerfeld equation was changed to matrix form, covering the whole domain of solution. Next, each term of matrix was expanded using Chebyshev expansion series, a series very much equivalent to the Fourier cosine series. A group of functions and conditions are applied to start and end points i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014